EUFAR - EUropean Facility for Airborne Research

The HYperspectral SOil MApper (HYSOMA)

Sabine Chabrillat, GFZ

in some nyperspectral so	u wakkei feariù - aarialkua		
INPUT DATA / OUTPUT DIA	RECTORY		
Hyperspectral Input File:	/wisc/se3/PCfiles/enseignement/Eufar_school_DePeNossi/DePeNossi_Germany_hymap.bsq	Preprocessing	
	Hyperspectral Image (Samples: 118, Lines: 116, Bands: 126)		
Output Directory:	Vmisc/se3/PCfiles/enseignement/Eufar_school_DePeMossi/	1	▼
Soil Dominant Mask File:	j/misc/se3/PCfiles/enseignement/Eufar_school_DePeMossi/DePeMossi_Germany_hymap_mask_soild	Generate	STAND TO A THE TANK THE STAND
SOIL HAPPING Tron Else Estatus Iron Resortion Besth [0, Iron Resortion Besth [0, Iron Resortion Besth [0, Iron Resorts Index Essante Dait Resort License]	isture Brganic Carbon isture		

N4EWG12 - Hyperspectral Applications for Soil

net

European Facility

DePeMossi Workshop - August 29-31, 2011 – GFZ Potsdam, Germany

Agenda

Introduction

- Context
- Litterature: Methods from soil spectroscopy to imaging spectroscopy
- Development strategy

HYSOMA structure and methods

- Conceptual framework
- Graphical User Interface
- Overview of soil mapping methods
- Overview of soil analyses tools
- Software availability/terms of use

Some examples: Validation of the HYSOMA

Exercises

Introduction

- Increasing demand nowadays for the availability/ accessibility of hyperspectral soil products from "nonexpert" hyperspectral users
- Call for development of automatic toolboxes for the quantification of chemical and physical soil properties based on spectral reflectance

High relevance

- EUFAR project
- Preparation of the future satellite hyperspectral missions
- $(\cdot,\cdot)_{i\in I}$

Can we develop automatic algorithms for soil mapping based on spectral reflectance?

s instruments and 21 an crart open to mans-national Acce

www.eufar.net

Courtesy I. Reussen

EUFR.net Hype

HyperSpectral Imaging sensors open to TA

Operator	Instrument
VITO	APEX
DLR	ROSIS
NERC	Eagle/Hawk
INTA	AHS/CASI1500i
FUB	CASI2

EUF R.net

EUFAR Activities

- Networking Activities 2 M€
 - **N1.** Scientific Advisory Committee (N1SAC-CNRM)
 - N2. Transnational Access coordination (N2TAC-MetOffice)
 - N3. Future of the Fleet (N3FF-Jülich)
 - N4. Expert Working Groups (N4EWG-ULEI)
 - N5. Education and Training (N5ET-VITO)
 - N6. Standards and Protocols (N6SP-DLR)
 - N7. Airborne Data Base (N7DB-STFC)
 - N8. E-Communication (N8EC-CNRM)
 - **N9.** Sustainable structure (N9SST-CNRM)

Transnational Activities (TA) – 3 M€

Joint Research Activities (JRA) - 2,4 M€

JRA1. Development and evaluation of new and improved hygrometers for airborne research (DENCHAR-Jülich)

JRA2. Quality layers for airborne hyperspectral imagery and data products (HYQUAPRO-VITO)

JRA3. Airborne Laser Interferometric Drop Sizer (ALIDS-IRSN)

JRA2 - Quality layers for airborne hyperspectral imagery and data products (HYQUAPRO)

Objectives:

- : To develop quality indicators and quality layers for airborne hyperspectral imagery
- : To develop quality indicators and quality layers for higher level data products

To implement and to test quality layers in existing processing chains of airborne

hyperspectral imagery

 To develop higher performing water and soil algorithms as demonstrators for end-to-end processing chains with harmonized quality measures

Objectives

Complex processing and interpretation of imaging spectroscopy for geo-applications, little attractive to new users

net

- In task 4: Development higher performing soil algorithms as demonstrators for end-to-end processing chains with harmonized measures
 - Delivery of soil products to users based on higher performing <u>robust</u> <u>algorithms</u> integrated in existing processing chains
 - As a demonstrator, further improvement and implementation of existing algorithms for soil products to provide standardized data products, attractive to <u>new users</u> who do not have expertise or software
- GFZ: Expertise in hyperspectral applications in related geo-sciences and soil products

et

Soil Parameters accessible with VNIR-SWIR spectroscopy

EUFR.net

Studies On Spectroscopy

Courtesy A. Eisele

Empirical relationship with samples

These techniques, after several spectral manipulation techniques, often make use of absorption feature characteristics (e.g., absorption-band wavelength position, depth and asymmetry), which are combined with geochemical analysis in a multi-linear regression to find empirical relationships with chemistry of a sample

et

European Facility For Airborne Research

Courtesy A. Eisele

EUF R.net

State of the art – Research

	Topic	Approach	Bio-, geochemical & physical Variables Pre-product	End-Product
GEOSPHERE	Soils	 Spectral Feature Fitting based on empirical/(physic.) models - SFF (i, n) Linear/non-linear spectral mixture analyses - SMA (d, i, n) Multiple, non-linear regress. (a) Neural networks (i) Spectral matching (i) 	 Soil mineral abundance Vegetation abundance Soil parent material type Dry matter (lignin/cellulose) Soil condition indices (e.g., clay/carbonate ratio) Mineral abundance Water content 	 Top soil constituents maps (organic matter, minerals, texture classes Soil cover/vegetation maps Soil condition/degradation maps Degradation trend maps Land management decision support systems

¹⁾ Approach: developed (d); to be adapted (a); to be improved (i); to be newly developed (n) Source: EnMap

Review of soil algorithms: Physical vs. Empirical modelling

Pure physical modelling

et

- Methods: BRDF-radiative transfert modeling, electronic and vibrational transitions theory
- : Output: soil-leaving reflectance, calculations of absorption features
- Comment: limited, not available for whole soils and rocks

Empirical modelling

- Methods: PLS, MLR, SVM
- Output: quantitative determination of pure mineral content
- Comment: need pre-knowledge (in-situ soil data, training vectors)

Physical modelling (Analytical approaches)- selection

- : Spectral mixture analyses
- Spectrum modelling (MGM)
- Spectral Band fitting (SFF/Tetracorder®), spectral matching (SAM, MTMF)
- Spectral band analyses/modelling (cont. rem., Band depth/areas, ..)
- Spectral indices

et

Review of soil algorithms

schematic ordering of methodologies in terms of development status and pre-knowledge needed

Algorithm	Output	Status	Pre-knowledge needed
BRDF-Radiative Transfer modeling	Soil-leaving reflectance		Soil geometry, illumination, albedo
Electronic and vibrational transitions theory	Calculation of absorption features	n/a	Molecule structure, replacement ion, energy fields
Spectral Mixture Analyses	Abundance image fraction. Quantification of soil type		Endmember selection or spectral library
Spectral Feature Fitting	Mineral identification	r	Spectral library
Modified Gaussian Modeling	Quantification of soil biophysical properties	r-fdn	-
ENVI classification techniques	Mineral identification (SAM) or quantification (MF)	r	Endmember selection
Spectral Indices	Semi-quantification of soil minerals or soil biophysical properties	r	-
Statistical Regression Analysis (LR, PLS)	Quantification of soil type, soil minerals, soil biophysical properties		In-situ data
Artificial Neural Network, SVM	Quantification of soil minerals, soil types	r-fdn	Learning/traning vectors

n/a non available; r robust; fdn further development needed Source: EUFAR Deliverable DJ241 March 2010

The HYperspectral Soil MApper (HYSOMA) (1)

Main motivation

net

To provide non-expert hyperspectral users with a suite of tools for soil applications

Criteria of developments (literature review + expert workshop)

- Use of methodology where automation is possible
- Choice of multiple algorithms by the users
- Addition: Implementation of a user custom option to incorporate user-driven applications and more quantitative mapping

Focus

- Identification and semi-quantification of key soil parameters
 - Soil moisture and soil organic matter
 - Mineral occurence mapping (iron oxide, clay minerals, carbonates)
- No need of user input data (e.g. spectral libraries, ground truth)

EUF Research The HYperspectral Soil MApper (HYSOMA) (2)

Software interface developed in IDL language

- : IDL widely used in the hyperspectral community Cf ENVI
- Can be executed without an IDL license as a binary version .SAV file using a free IDL virtual machine (Linux, MacOS, Windows..)
- Easy implementation in DLR processing chain

Stand alone software

- : GUI interface oriented for non-expert users
- Block programmation for handling of large datafile
- Multi-processor capabilities for fast calculations
- Configuration as XML files

The HYperspectral Soil MApper (HYSOMA) (3)

Incorporates

et

- Easy-to-use graphical interface based on simple menu-driven functions
- Soil functions based on analytical and empirical algorithms
 - Spectral feature analyses method (Continuum calculations, band depth, areas, ..)
 - Spectral indices from the literature
 - Gaussian modelling (Soil Moisture Gaussian Modelling method from Whiting)
- User custom options for fully quantitative soil mapping (experts-request)
 - User-driven spectral feature analyses
 - Using users own spectral-based models (PLS equation)
 - Soil Analyses Tools
 - Input field measurements for calibration
 - Extraction of spectral library
 - Extraction of derived soil attributes

HYSOMA conceptual framework

- Input: Basic image file import based on ENVI format
- **Soil mask option removing water and vegetation pixels**
- Performing soil functions

HYSOMA: Data formats

Input: L2 product

net

- Ortho-rectified ground reflectance, corrected for terrain illumination effects, as integer values, scaled to 10.000 (=100% reflectance), Flat binary BSQ format, ENVI header
- Standard HDF5 format
- Quality Layers according to harmonized EUFAR standard (QC_overall, QC_water)
- Also possible: input spectral library (envi format)

Ouput: L3 products

- One file for each soil map
- Format: ENVI, floating point
- Automatic names based on image name+ Suffix
- Quality Layers for soil product (QC_soil)

HYSOMA: From ortho-rectified reflectance to soil attributes maps

European Facility For Airborne Research et

HYSOMA main GUI

🗙 HYSOMA: Hyperspectral Soi	l Mapper (2011) - v0.1alpha			_ x	
_ INPUT DATA ∕ OUTPUT DIR	ECTORY		Input image file	p	
Hyperspectral Input File:	Hyperspectral Input File: [/misc/se3/PCfiles/enseignement/Eufar_school_DePeMossi/DePeMossi_Germany_hymap.bsq				
	Hyperspectral Image (Samples: 118, Lines:	116, Bands: 126)	Output product o	lirectory	
Output Directory:	Output Directory:				
Soil Dominant Mask File:	Soil Dominant Mask File: 🏹 Misc/se3/PCfiles/enseignement/Eufar_school_DePeMossi/DePeMossi_Germany_hymap_mask_soild 🖆				
SOIL MAPPING	nput for Soil Dominant Mask Fi	SOIL ANALY	SIS		
Iron Clay Carbonate Soil Moi	isture]Organic Carbon]User Inputs]	Generate Sp	lidation File		
□ Iron Absorption Depth [0.	460 - 0,620]	Generate Ca	libration File		
🗐 Iron Absorption Depth [0.	760 - 1.050] Parameter Selection tabs	3 <u>.</u>		s	
⊒ RI: Redness Index					
Execute		Soil A To Select	Analysis Soi ools Pr tion GUI Sel	l Masking ocedure ection GUI	
Quit About License F	าซร์ สาขามวลรา				

et

HYSOMA soil functions: Overview

Identification and semi-quantification

Soil chromophores	Soil algorithm	Spectral Region (nm)	Estimated soil parameters	
Clay Minerals Al-OH content	Clay index (SWIR FI)	2209, 2133, 2225	Clay mineral content (Levin et al., 2007)	
	Clay absorption depth	2120 - 2250	Clay mineral content	
Iron Oxides Fe_2O_3 content	Iron index (RI)	477, 556, 693	Hematite content (Madeira et al., 1997 ; Matthieu et al., 1998)	
	Iron absorption depth 1	450 - 630	Iron oxide content	
	Iron absorption depth 2	750 - 1040	Iron oxide content	
Carbonates Mg-OH content	Carbonate absorption depth	2300 - 2400	Carbonate content	
Soil Moisture Content	Moisture index (NSMI)	1800, 2119	Soil moisture content (Haubrock et al. 2008a, 2008b)	
	Gaussian modelling (SMGM)	~1500-2500	Soil moisture content (Whiting et al. 2004)	
Soil Organic Carbon	Band analysis SOC 1	400 - 700	Organic matter content (Bartholomeus et al., 2008)	
	Band analysis SOC 2	400 , 600	Organic matter content (Bartholomeus et al., 2008)	
	Band analysis SOC 3	2138 - 2209	Indirect organic matter content (Bartholomeus et al., 2008)	

EUF R.net

HYSOMA soil functions

Clay Minerals - Al-OH content

- Clay CRAD 1 (2120 2250nm)
- Clay Index (Levin et al., 2007)

Iron Clay Carbonate Soil Moisture Organic Carbon User Inputs

- 🔟 Clay Absorption Depth [2,120 2,250]
- □ SWIR FI: Short-Wave Infrared Fine particle Index

Iron Oxides - Fe₂O₃ content

- Iron CRAD 1 (450 630nm)
- Iron CRAD 2 (750 1040nm)
- Iron Index (Mathieu et al. 1998)

- Iron Clay Carbonate Soil Moisture Organic Carbon User Inputs
 - 💷 Iron Absorption Depth [0,460 0,620]
 - □ Iron Absorption Depth [0.760 1.050]
 - → RI: Redness Index

Carbonates - Mg-OH content

Carbonate CRAD (2300 – 2400nm)

Iron Clay Carbonate Soil Moisture Organic Carbon User Inputs

□ Carbonate Absorption Depth [2,300 - 2,400]

HYSOMA soil functions

Soil Moisture content

et

- SMGM (Whiting et al. 2004)
- NSMI (Haubrock et al. 2008)

there of a bend to be the bend to be bend to be the best

- 💷 SMGM: Soil Moisture Gaussian Model
- 🔲 NSMI: Normalised Soil Moisture Index

Soil Organic Carbon

- SOC 1 (Bartholomeus et. al., 2008)
- SOC 2 (Bartholomeus et. al., 2008)
- SOC 3 (Bartholomeus et. al., 2008)

Iron Clay Carbonate	Soil Moi	sture]Organic	Carbon User	Inputs
⊒ SOC 1				
🖬 SOC 2				
🖾 SOC 3				

Research

Soil Algorithms

Spectral Soil Algorithms I

• Redness Index (RI)

 $Iron - Index = \frac{(R_{693})^2}{(R_{477}) * (R_{556})^3}$

• Clay Index (SWIR FI)

 $Clay - Index = \frac{(R_{2133})^2}{(R_{2225})*(R_{2209})^3}$

• Normalized Soil Moisture Index (NSMI)

$$NSMI = \frac{(R_{1800} - R_{2119})}{(R_{1800} + R_{2119})}$$

• Surface Soil Moisture (SMGM)

after Whiting et al. (2004)

$$A = R_d \sigma \sqrt{\frac{\pi}{2}} * erf\left(\frac{\lambda_0 - \lambda_i}{\sqrt{2*\sigma}}\right)$$

EUF R. net

Research

Soil Algorithms

Spectral Soil Algorithms I

• Redness Index (RI)

 $Iron - Index = \frac{(R_{693})^2}{(R_{477}) * (R_{556})^3}$ • Clay Index (SWIR FI)

Clay - Index =
$$\frac{(R_{2133})^2}{(R_{2225})*(R_{2209})^3}$$

• Normalized Soil Moisture Index (NSMI)

$$NSMI = \frac{(R_{1800} - R_{2119})}{(R_{1800} + R_{2119})}$$

 Surface Soil Moisture (SMGM)

after Whiting et al. (2004)

$$A = R_d \sigma \sqrt{\frac{\pi}{2}} * erf\left(\frac{\lambda_0 - \lambda_i}{\sqrt{2*\sigma}}\right)$$

EUF R. net

Research

Soil Algorithms

Spectral Soil Algorithms I

• Redness Index (RI)

 $Iron - Index = \frac{(R_{693})^2}{(R_{477}) * (R_{556})^3}$

• Clay Index (SWIR FI)

$$Clay - Index = \frac{(R_{2133})^2}{(R_{2225})*(R_{2209})^3}$$

• Normalized Soil Moisture Index (NSMI)

$$NSMI = \frac{(R_{1800} - R_{2119})}{(R_{1800} + R_{2119})}$$

 Surface Soil Moisture (SMGM)

after Whiting et al. (2004)

$$A = R_d \sigma \sqrt{\frac{\pi}{2}} * erf\left(\frac{\lambda_0 - \lambda_i}{\sqrt{2*\sigma}}\right)$$

EUF R. net

Research

Soil Algorithms

2200 2300 Wavelength [nm]

2400

250

Spectral Soil Algorithms I

• Redness Index (RI)

0.40 🖓 $(R_{693})^2$ Iron - Index = $(R_{477}) * (\overline{R_{556}})^3$ • Clay Index (SWIR FI) 0.35 $(R_{2133})^2$ Reflectance Clay - Index = - $(R_{2225}) * (R_{2209})^3$ 0.30 • Normalized Soil Moisture Index (NSMI) 0.25 $(R_{1800} - R_{2119})$ NSMI =

2000

2100

• Surface Soil Moisture (SMGM)

after Whiting et al. (2004)

 $(R_{1800} + R_{2119})$

$$A = R_d \sigma \sqrt{\frac{\pi}{2}} * erf\left(\frac{\lambda_0 - \lambda_i}{\sqrt{2*\sigma}}\right)$$

Research

Soil Algorithms

EUF R.net

Soil Algorithms

Spectral Soil Algorithms I

• Redness Index (RI)

1.0 $(R_{693})^2$ Oven Dried_ Iron - Index = $(R_{477}) * (R_{556})^3$ Normalized Reflectance • Clay Index (SWIR FI) $(R_{2133})^2$ Clay - Index = - $(R_{2225}) * (R_{2209})^3$ Normalized Soil Moisture Index (NSMI) $(R_{1800} - R_{2119})$ NSMI = $(R_{1800} + R_{2119})$ • Surface Soil Moisture 0.2 (SMGM) 1.5 0.5 1.0 2.0 2.5 after Whiting et al. (2004) Wavelength (um) $\lambda_0 - \lambda_i$ $A = R_d \sigma \sqrt{\frac{\pi}{2} * erf}$

EUF R.net

Research

Soil Algorithms

R_d

λ₀___

2.8

Spectral Soil Algorithms I

• Redness Index (RI)

1.00 $(R_{693})^2$ Iron - Index = $(R_{477}) * (R_{556})^3$ 0.98 • Clay Index (SWIR FI) $(R_{2133})^2$ Clay - Index = - $(R_{2225}) * (R_{2209})^3$ σ Normalized Soil Moisture Index (NSMI) $(R_{1800} - R_{2119})$ NSMI = $(R_{1800} + R_{2119})$ 0.88 • Surface Soil Moisture (SMGM) 0.86 2.0 2.2 2.4 0.8 2.6 after Whiting et al. (2004) Wavelength (um) $\lambda_0 - \lambda_i$ $A = R_d \sigma \sqrt{\frac{\pi}{2} * erf}$

Research

Soil Algorithms

Spectral Soil Algorithms II

• Soil Organic Carbon

Research

Soil Algorithms

Spectral Soil Algorithms II

• Soil Organic Carbon

Research

Soil Algorithms

Spectral Soil Algorithms II

• Soil Organic Carbon

Soil Algorithms

Soil Algorithms

EUF R.net

Soil Quality Layer

Determine range of error of soil mapping

- Standard Format EUFAR quality layers: 3 levels of accuracy
 - Nominal accuracy
 - Reduced accuracy
 - Low accuracy
- Based on 4 parameters
 - Pre-processing overall quality layer (QC_overall, EUFAR standard) if available
 - Vegetation coverage (both green and dry vegetation)
 - Soil moisture content

HYSOMA output files

Soil chromophores	nophores Soil algorithm Spectral region (nm)		File name (Suffix)*
Iron oxydes Fe ₂ O ₃ content	RI (Redness Index)	477, 556, 693	_Iron_RI
	Iron CRAD 1	460 - 620	_Iron_CRAD_460_620
	Iron CRAD 2 760 – 1050		_Iron_CRAD_760_1050
Clay Minerals Al-OH content	SWIR FI (Fine particule Index)	2209, 2133, 2225	_Clay_SWIRFI
Clay CRAD 2120 -		2120 - 2250	_Clay_CRAD_2120_2250
Carbonates Mg-OH content	Carbonates CRAD	2300 - 2400	_Carbonate_CRAD_2300_ 2400
Soil moisture content	NSMI (Normalised Soil Moisture Index)	1800, 2119	_Moisture_NSMI
	SMGM (Soil Moisture Gaussian Modeling)	~1500 - 2500	_Moisture_SMGM
Soil Organic Carbon content	SOC 1	400 - 700	_SOC1
	SOC 2	400, 600	_SOC2
	SOC 3	2138, 2209	_SOC3
Soil Quality Layer	Water mask, green/dry veg, soil moisture, pre-processing overall EUFAR quality layer	all	_QC_Soil

**Full file names: basename+suffix*

Mapping the results

0.138	0.789	0.003
0.222	0.265	0.987
0.789	0.878	0.333

Some screenshots from HYSOMA results

Hyperspectral (HyMAP) color infrared scene (Cabo de Gata) Spectrally soil dominant pixels

AI-OH

et

relative abundance

Iron oxides relative abundance

EUF R.net

Research

Additional soil functions: User Inputs

User input

- Individual Spectral Feature Analyses
- Self defined left-right shoulder
- I! Shoulders are not real shoulder, but should enveloppe your spectral feature!!
- ••• Output: relative abundance map

Iron Clay Carbonate	Soil Moisture	Organic Carbon	User Inputs)
F Absorption Depth	#1: Shoulders	- Left: I	, Right: I
F Absorption Depth	#2: Shoulders	- Left: I	, Right:
⊒ PLS Regression;	I		8

Input PLS equation file

- File format: text (Parles software output)
- 🔹 3 columns: lambda, b, b0
- Ouput: Fully quantitative abundance soil maps

Iron Clay Carbonate	Soil	Moisture	Organic	Carbon	User Inp	uts]
🖾 Absorption Depth	#1:	Shoulders	- Left:	I	, Erght	: <u>I</u>
🗐 Absorption Depth	#2:	Shoulders	- Left:	I	, Enght	: <u>I</u>
■ PLS Regression:	jplsr	_bb0.txt				2

Soil Analyses Tools

Generate Spectral Library

- Extract individual spectra from the image file
- Input: geographic coordinates
 - : File format: csv
 - 🕆 3 columns: ID, X, Y
- 😳 Ouput: spectral library Envi format
- •:• Option: window size

🗙 HYSOMA - Generate Spectral Li	brary File	_
INPUT DATA / OUTPUT DIRECT	IORY	
Hyperspectral Input File:]/misc/se3/PCfiles/enseignement/Eufar_school_DePeMossi/DePeMossi_Germany_hymap.bsq	
	Hyperspectral Image (Samples: 118, Lines: 116, Bands: 126)	
Reference Point File:		2
Spectral Library Output File:	and the second se	2
PARAMETERS Average Window Size: 💠 1x1 🔶 3	ix3 ∻ 5x5 ∻ 7x7 💡	
Execute About Cancel		

Soil Analyses Tools

Import

X A9	SCII Template [DePeMossi_Germany_chemie_geo.csv]	×
ASCII	Template Step 1 of 3: Define Data Type/Range	
First	choose the field type which best describes your data:	
Ŷ	Fixed Width (fields are aligned in columns)	
*	Delimited (fields are separated by commas, whitespace, etc.)	
Comr	ment String to Ignore:	
Data	a Starts at Line: $(1) \rightarrow Data Starts at Line: 2$	
Selec	ted Text File:	
	nisc/se3/PCfiles/enseignement/Eufar_school_DePeMossi/DePeMossi_Germany_chemie_geo.cs	4
1	ID;X;Y;SH	-
2	soil01;450955,46;5716515,23;0,25	
3	soi102;450890,74;5716553,83;0,71	
4	soi103;450838,92;5716583,39;0,76	
5	soi104;450876,74;5716542,12;0,53	
6	soi105;450933,83;5716512,07;0,88	
7	soil06;450891,68;5716523,58;0,57	∇
	4	
Held	Cancel (<< šack Next >	>1

Soil Analyses Tools

Generate Validation file

- Extract individual soil parameter values from HYSOMA ouput soil maps (automatic detection of already calculated HYSOMA output files)
- Input: geographic coordinates of points
 - File format: csv
 - 🗈 3 columns minimum: ID, X, Y
- Ouput: Excell table with Name, X, Y, soil parameters (as many as HYSOMA already calculated soil maps)
- Option: window size for averaging the soil parameter value extracted

Soil Analyses Tools

Generate Validation file

Extract individual soil parameter values from HYSOMA ouput soil maps (automatic detection of already calculated HYSOMA output files)

2	HYSOMA - Generate Validation	File 🧐	_ = ×	
Г	INPUT DATA / OUTPUT DIRECT	ORY		
	Output Directory:	∦misc/se3/PCfiles/enseignement/Eufar_school_DePeMossi/	F	
20	Field Reference Point File:	Ĭ	* ?	iny as
SE.	VALIDATION PARAMETERS			
	Average Window Size: 💠 1×1 🖌	> 3x3 ⇔ 5x5 ⇔ 7x7 👔		extracted
	VALIDATION FILE GENERATION The file DePeMossi_Germany_hymap_V /misc/se3/PCfiles/enseignement/Eu /misc/se3/PCfiles/enseignement/Eu /misc/se3/PCfiles/enseignement/Eu /misc/se3/PCfiles/enseignement/Eu /misc/se3/PCfiles/enseignement/Eu /misc/se3/PCfiles/enseignement/Eu /misc/se3/PCfiles/enseignement/Eu /misc/se3/PCfiles/enseignement/Eu /misc/se3/PCfiles/enseignement/Eu /misc/se3/PCfiles/enseignement/Eu /misc/se3/PCfiles/enseignement/Eu	alidation_Win_3.txt will be generated. It will contain validation for: Far_school_DePeMossi/DePeMossi_Germany_hymap_Clay_CRAD_2120_2250.dat Far_school_DePeMossi/DePeMossi_Germany_hymap_IClay_CRAD_2120_2250.dat Far_school_DePeMossi/DePeMossi_Germany_hymap_ICn_CRAD_450_260.dat Far_school_DePeMossi/DePeMossi_Germany_hymap_Iron_CRAD_450_260.dat Far_school_DePeMossi/DePeMossi_Germany_hymap_Iron_RI.dat Far_school_DePeMossi/DePeMossi_Germany_hymap_Monsture_NSML.dat Far_school_DePeMossi/DePeMossi_Germany_hymap_Monsture_NSML.dat Far_school_DePeMossi/DePeMossi_Germany_hymap_Moisture_SMGM.dat Far_school_DePeMossi/DePeMossi_Germany_hymap_SOC1.dat Far_school_DePeMossi/DePeMossi_Germany_hymap_SOC3.dat		
	Execute About Cancel			

Soil Analyses Tools

Generate Calibration file: Input field measurements for calibration

- Perform calibration of an HYSOMA output soil map with field measurements
- Input: field measurements file or already calculated gain and offset

File format: csv

4 columns: ID, X, Y, absolute value of soil parameter

Ouput: Fully quantitative abundance soil map file

Soil Analyses Tools

Generate Calibration file: Input field measurements for calibration

- Perform calibration of an HYSOMA output soil map with field measurements
- Input: field measurements file or already calculated gain and offset

misc/se3/PCfiles/enseignement	/Eufar_school_DePeMossi/	
DePeMossi_Germany_hymap_	Moisture_NSMI.dat 🔤	
Field Measurement File:	DePeMossi_Germany_chemie_geo.csv	2
(ON Germany_hymap_Moisture_NSMI_	cal.dat will be created in the given directory	
	misc/se3/PCfiles/enseignement DePeMossi_Germany_hymap_ Field Measurement File: ION	misc/se3/PCfiles/enseignement/Eufar_school_DePeMossi/ DePeMossi_Germany_hymap_Moisture_NSMI.dat = Field Measurement File: DePeMossi_Germany_chemie_geo.csv ION i_Germany_hymap_Moisture_NSMI_cal.dat will be created in the given directory

Soil Analyses Tools

Generate Calibration file: Input field measurements for calibration

- Perform calibration of an HYSOMA output soil map with field measurements
- Input: field measurements file or already calculated gain and offset

Dutput Directory: //misc/se3/PCfiles/enseignement/Eufar_school_DePeMossi/ Soil Product Data Files: DePeMossi_Germany_hymap_Moisture_NSMI.dat CALIBRATION PARAMETERS	PRODUCT DIRECTORY	
Soil Product Data Files: DePeMossi_Germany_hymap_Moisture_NSMI.dat = CALIBRATION PARAMETERS Set Gain and Offset Set Field Measurement File Gain: T, Offset: T> These values will be applied to the whole image CALIBRATION FILE GENERATION Calibrata The filet DePeMosei Germany hymap Moisture NSMI cal dat will be created in the siven directory.	Output Directory:	j¥misc/se3/PCfiles/enseignement/Eufar_school_DePeMossi/ 2€
CALIBRATION PARAMETERS	Soil Product Data Files:	DePeMossi_Germany_hymap_Moisture_NSMI.dat 🔤
Calibration FILE GENERATION	CALIBRATION PARAMETERS	Gain: I , Offset: I> These values will be applied to the whole image
	V Sec Lieid Heasthemetic Li	
	CALIBRATION FILE GENER	ATION

Software availability/ Terms of use

HYSOMA development

- Made at GFZ under the EU-FP7 EUFAR project
- Current prototype in last phase of development
- HYSOMA_AUTO >> integrated in DLR PAF: incorporates all automatic algorithms of HYSOMA

Some limitations, notes for the future

- Read ENVI, HDF5
- Image visualisation deactivated
- Processing methods fixed

Distribution

- As pre-compiled version (sav file). IDI license or freely available IDL virtual machine necessary (www.ittivs.com/idlvm)
- Provided free-of-charge via the internet on GFZ web site
- HYSOMA interface will be included in EUFAR toolbox in 2012
- Usage free for non-commercial and educational purposes

EUF research Test and validation for clay, carbonates and iron estimation

Cabo de Gata test site (Dr. Nicole Richter, GFZ, UAL, UPM)

- : 50 samples
 - Soil texture
 - CaCO3
 - OC
 - Fe_d
- HyMap imagery20050624

et

Some screenshots of HYSOMA soil maps

HYSOMA: Conclusion (1)

Main motivation

To provide non-expert hyperspectral users with a suite of tools for soil applications

Stand alone IDL software

- Easy implementation in hyperspectral and non-hyperspectral community (distribution under idl- virtual machine)
- : Choice of multiple algorithms for each soil parameter

Focus

- Fully automatic generation of semi-quantitative soil maps (no need of spectral library, ground truth)
- Key soil parameters: soil moisture, soil organic matter, iron oxide, clay, carbonates content
- Soil functions based on analytical and empirical algorithms
- User custom option for fully quantitative soil mapping

HYSOMA: Conclusion (2)

HYSOMA

ean Facility

net

- Is: Experimental platform for soil mapping applications of hyperspectral imagery
- : Is NOT: Image processing software incl. All methods

Results

- 🕂 Hysoma handles well all sensors and input type (.bsq, hdf5)
- All algorithms checked
- Qualitative and quantitative in-situ validation of soil products: correlations from R² of 0.67 (SOC) up to >0.9 (NSMI & SMGM)
 - 3x3 window optimum for cal/val
 - Results consistent with literature
 - NSMI and SMGM both provide good results
 - SOC methods based on spectral indices are more limited PLS regression mostly used for quantitative SOC mapping
 - Soil products based on spectral band analyses consistent with mineralogical maps
 - Some (inherent) limitations

HYSOMA: Lessons learned

Always much more work to do....

- Final tests and validation
- · Add other approaches in the future
- Software in development!

Does Automatisation mean No quantification ?

- Did we miss something?
 - \rightarrow More physically based approaches
 - \rightarrow Global models vs. local

Implementation and future development of soil toolboxes for easy access to L3 geoscience products

- Integration in EUFAR toolbox
- Free distribution

HYSOMA 2011 - THANK YOU!

HYSOMA team at GFZ and TU-Berlin

Andreas Eisele

net

European Facility For Airborne Research

- Stéphane Guillaso
- Christian Rogass
- Mathias Rösch

EUFAR HYQUAPRO partners

- 🗈 Eyal Ben-Dor, TAU
- 🕂 Ils Reussen, VITO
- Martin Bachmann, DLR
- Steve Groom, PML

Collaborating scientists for validation data

- 📫 Antoine Stevens, UCL Belgium
- 💀 Sören Haubrock, GNS science
- 💀 Mike Whiting, UCLA California
- 📫 Nicole Richter, Uni Bergen
- 🐨 Group of Eyal Ben-Dor, TAU