Publications related to the GRACE Missions (no abstracts)

Sorted by DateSorted by Last Name of First Author

A Prior Knowledge-Enhanced Deep Learning Framework for Improved Thermospheric Mass Density Prediction

Li, Ling, He, Changyong, Zheng, Dunyong, Li, Shaoning, and Zhao, Dong, 2025. A Prior Knowledge-Enhanced Deep Learning Framework for Improved Thermospheric Mass Density Prediction. Atmosphere, 16(5):539, doi:10.3390/atmos16050539.

Downloads

from the NASA Astrophysics Data System  • by the DOI System  •

BibTeX

@ARTICLE{2025Atmos..16..539L,
       author = {{Li}, Ling and {He}, Changyong and {Zheng}, Dunyong and {Li}, Shaoning and {Zhao}, Dong},
        title = "{A Prior Knowledge-Enhanced Deep Learning Framework for Improved Thermospheric Mass Density Prediction}",
      journal = {Atmosphere},
     keywords = {thermospheric mass density prediction, ResNet, deep learning, prior knowledge, NRLMSIS-2.1},
         year = 2025,
        month = may,
       volume = {16},
       number = {5},
          eid = {539},
        pages = {539},
     abstract = "{Accurate thermospheric mass density (TMD) prediction is critical for
        applications in solar-terrestrial physics, spacecraft safety,
        and remote sensing systems. While existing deep learning
        (DL)-based TMD models are predominantly data-driven, their
        performance remains constrained by observational data
        limitations. This study proposes ResNet-MSIS, a novel hybrid
        framework that integrates prior knowledge from the empirical
        NRLMSIS-2.1 model into a residual network (ResNet) architecture.
        The incorporation of NRLMSIS-2.1 enhanced the performance of
        ResNet-MSIS, yielding a lower root mean squared error (RMSE) of
        0.2657 {\texttimes} <inline-formula><mml:math><mml:semantics><mm
        l:mrow><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mr
        ow><mml:mo>‑</mml:mo><mml:mn>12</mml:mn></mml:mrow></mml:msup></
        mml:mrow></mml:semantics></mml:math></inline-formula> kg/m$^{3}$
        in TMD prediction compared with 0.2750 {\texttimes} <inline-form
        ula><mml:math><mml:semantics><mml:mrow><mml:msup><mml:mrow><mml:
        mn>10</mml:mn></mml:mrow><mml:mrow><mml:mo>‑</mml:mo><mml:mn>12<
        /mml:mn></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:m
        ath></inline-formula> kg/m$^{3}$ from ResNet, along with faster
        convergence during training and better generalization on Gravity
        Recovery and Climate Experiment (GRACE-A) data, which was
        trained and validated on the CHAllenging Minisatellite Payload
        (CHAMP) TMD data (2000{\textendash}2009, altitude of
        305{\textendash}505 km, avg. 376 km) under quiet geomagnetic
        conditions (Kp {\ensuremath{\leq}} 3). The DL model was
        subsequently tested on the remaining CHAMP-derived TMD
        observations, and the results demonstrated that ResNet-MSIS
        outperformed both ResNet and NRLMSIS-2.1 on the test dataset.
        The model's robustness was further demonstrated on GRACE-A data
        (2002{\textendash}2009, altitude of 450{\textendash}540 km, avg.
        482 km) under magnetically quiet conditions, with the RMSE
        decreasing from 0.3352 {\texttimes} <inline-formula><mml:math><m
        ml:semantics><mml:mrow><mml:msup><mml:mrow><mml:mn>10</mml:mn></
        mml:mrow><mml:mrow><mml:mo>‑</mml:mo><mml:mn>12</mml:mn></mml:mr
        ow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-
        formula> kg/m$^{3}$ to 0.2959 {\texttimes} <inline-formula><mml:
        math><mml:semantics><mml:mrow><mml:msup><mml:mrow><mml:mn>10</mm
        l:mn></mml:mrow><mml:mrow><mml:mo>‑</mml:mo><mml:mn>12</mml:mn><
        /mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inl
        ine-formula> kg/m$^{3}$, indicating improved high-altitude
        prediction accuracy. Additionally, ResNet-MSIS effectively
        captured the horizontal TMD variations, including equatorial
        mass density anomaly (EMA) and midnight density maximum (MDM)
        structures, confirming its ability to learn complex
        spatiotemporal patterns. This work underscores the value of
        merging data-driven methods with domain-specific prior
        knowledge, offering a promising pathway for advancing TMD
        modeling in space weather and atmospheric research.}",
          doi = {10.3390/atmos16050539},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2025Atmos..16..539L},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Generated by bib2html_grace.pl (written by Patrick Riley modified for this page by Volker Klemann) on Thu Aug 14, 2025 17:55:12

GRACE-FO

Thu Aug 14, F. Flechtner