Publications related to the GRACE Missions (no abstracts)

Sorted by DateSorted by Last Name of First Author

Downscaling GRACE-derived ocean bottom pressure anomalies using self-supervised data fusion: Downscaling GRACE-derived ocean bottom pressure anomalies...

Gou, Junyang, Börger, Lara, Schindelegger, Michael, and Soja, Benedikt, 2025. Downscaling GRACE-derived ocean bottom pressure anomalies using self-supervised data fusion: Downscaling GRACE-derived ocean bottom pressure anomalies.... Journal of Geodesy, 99(2):19, doi:10.1007/s00190-025-01943-9.

Downloads

from the NASA Astrophysics Data System  • by the DOI System  •

BibTeX

@ARTICLE{2025JGeod..99...19G,
       author = {{Gou}, Junyang and {B{\"o}rger}, Lara and {Schindelegger}, Michael and {Soja}, Benedikt},
        title = "{Downscaling GRACE-derived ocean bottom pressure anomalies using self-supervised data fusion: Downscaling GRACE-derived ocean bottom pressure anomalies...}",
      journal = {Journal of Geodesy},
     keywords = {Downscaling, Ocean bottom pressure, GRACE(-FO), Ocean dynamics, Deep learning, Engineering, Geomatic Engineering, Earth Sciences, Oceanography, Physics - Geophysics},
         year = 2025,
        month = feb,
       volume = {99},
       number = {2},
          eid = {19},
        pages = {19},
     abstract = "{The gravimetry measurements from the Gravity Recovery and Climate
        Experiment (GRACE) and its follow-on (GRACE-FO) mission provide
        an essential way to monitor changes in ocean bottom pressure
        (<inline-formula id=``IEq1''><mml:math id=``IEq1\_Math''><mml:ms
        ub><mml:mi>p</mml:mi><mml:mi>b</mml:mi></mml:msub></mml:math></i
        nline-formula>), which is a critical variable in understanding
        ocean circulation. However, the coarse spatial resolution of the
        GRACE(-FO) fields blurs important spatial details, such as
        <inline-formula id=``IEq2''><mml:math id=``IEq2\_Math''><mml:msu
        b><mml:mi>p</mml:mi><mml:mi>b</mml:mi></mml:msub></mml:math></in
        line-formula> gradients. In this study, we employ a self-
        supervised deep learning algorithm to downscale global monthly
        <inline-formula id=``IEq3''><mml:math id=``IEq3\_Math''><mml:msu
        b><mml:mi>p</mml:mi><mml:mi>b</mml:mi></mml:msub></mml:math></in
        line-formula> anomalies derived from GRACE(-FO) observations to
        an equal-angle 0.25 <inline-formula id=``IEq4''><mml:math id=``I
        Eq4\_Math''><mml:mmultiscripts><mml:mrow></mml:mrow><mml:mrow></
        mml:mrow><mml:mo>{\ensuremath{\circ}}</mml:mo></mml:mmultiscript
        s></mml:math></inline-formula> grid in the absence of high-
        resolution ground truth. The optimization process is realized by
        constraining the outputs to follow the large-scale mass
        conservation contained in the gravity field estimates while
        learning the spatial details from two ocean reanalysis products.
        The downscaled product agrees with GRACE(-FO) solutions over
        large ocean basins at the millimeter level in terms of
        equivalent water height and shows signs of outperforming them
        when evaluating short spatial scale variability. In particular,
        the downscaled <inline-formula id=``IEq5''><mml:math id=``IEq5\_
        Math''><mml:msub><mml:mi>p</mml:mi><mml:mi>b</mml:mi></mml:msub>
        </mml:math></inline-formula> product has more realistic signal
        content near the coast and exhibits better agreement with tide
        gauge measurements at around 80\% of 465 globally distributed
        stations. Our method presents a novel way of combining the
        advantages of satellite measurements and ocean models at the
        product level, with potential downstream applications for
        studies of the large-scale ocean circulation, coastal sea level
        variability, and changes in global geodetic parameters.}",
          doi = {10.1007/s00190-025-01943-9},
archivePrefix = {arXiv},
       eprint = {2404.05818},
 primaryClass = {physics.geo-ph},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2025JGeod..99...19G},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Generated by bib2html_grace.pl (written by Patrick Riley modified for this page by Volker Klemann) on Thu Aug 14, 2025 17:55:12

GRACE-FO

Thu Aug 14, F. Flechtner