• Sorted by Date • Sorted by Last Name of First Author •
Gou, Junyang, Börger, Lara, Schindelegger, Michael, and Soja, Benedikt, 2025. Downscaling GRACE-derived ocean bottom pressure anomalies using self-supervised data fusion: Downscaling GRACE-derived ocean bottom pressure anomalies.... Journal of Geodesy, 99(2):19, doi:10.1007/s00190-025-01943-9.
• from the NASA Astrophysics Data System • by the DOI System •
@ARTICLE{2025JGeod..99...19G, author = {{Gou}, Junyang and {B{\"o}rger}, Lara and {Schindelegger}, Michael and {Soja}, Benedikt}, title = "{Downscaling GRACE-derived ocean bottom pressure anomalies using self-supervised data fusion: Downscaling GRACE-derived ocean bottom pressure anomalies...}", journal = {Journal of Geodesy}, keywords = {Downscaling, Ocean bottom pressure, GRACE(-FO), Ocean dynamics, Deep learning, Engineering, Geomatic Engineering, Earth Sciences, Oceanography, Physics - Geophysics}, year = 2025, month = feb, volume = {99}, number = {2}, eid = {19}, pages = {19}, abstract = "{The gravimetry measurements from the Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) mission provide an essential way to monitor changes in ocean bottom pressure (<inline-formula id=``IEq1''><mml:math id=``IEq1\_Math''><mml:ms ub><mml:mi>p</mml:mi><mml:mi>b</mml:mi></mml:msub></mml:math></i nline-formula>), which is a critical variable in understanding ocean circulation. However, the coarse spatial resolution of the GRACE(-FO) fields blurs important spatial details, such as <inline-formula id=``IEq2''><mml:math id=``IEq2\_Math''><mml:msu b><mml:mi>p</mml:mi><mml:mi>b</mml:mi></mml:msub></mml:math></in line-formula> gradients. In this study, we employ a self- supervised deep learning algorithm to downscale global monthly <inline-formula id=``IEq3''><mml:math id=``IEq3\_Math''><mml:msu b><mml:mi>p</mml:mi><mml:mi>b</mml:mi></mml:msub></mml:math></in line-formula> anomalies derived from GRACE(-FO) observations to an equal-angle 0.25 <inline-formula id=``IEq4''><mml:math id=``I Eq4\_Math''><mml:mmultiscripts><mml:mrow></mml:mrow><mml:mrow></ mml:mrow><mml:mo>{\ensuremath{\circ}}</mml:mo></mml:mmultiscript s></mml:math></inline-formula> grid in the absence of high- resolution ground truth. The optimization process is realized by constraining the outputs to follow the large-scale mass conservation contained in the gravity field estimates while learning the spatial details from two ocean reanalysis products. The downscaled product agrees with GRACE(-FO) solutions over large ocean basins at the millimeter level in terms of equivalent water height and shows signs of outperforming them when evaluating short spatial scale variability. In particular, the downscaled <inline-formula id=``IEq5''><mml:math id=``IEq5\_ Math''><mml:msub><mml:mi>p</mml:mi><mml:mi>b</mml:mi></mml:msub> </mml:math></inline-formula> product has more realistic signal content near the coast and exhibits better agreement with tide gauge measurements at around 80\% of 465 globally distributed stations. Our method presents a novel way of combining the advantages of satellite measurements and ocean models at the product level, with potential downstream applications for studies of the large-scale ocean circulation, coastal sea level variability, and changes in global geodetic parameters.}", doi = {10.1007/s00190-025-01943-9}, archivePrefix = {arXiv}, eprint = {2404.05818}, primaryClass = {physics.geo-ph}, adsurl = {https://ui.adsabs.harvard.edu/abs/2025JGeod..99...19G}, adsnote = {Provided by the SAO/NASA Astrophysics Data System} }
Generated by
bib2html_grace.pl
(written by Patrick Riley
modified for this page by Volker Klemann) on
Thu Aug 14, 2025 17:55:12
GRACE-FO
Thu Aug 14, F. Flechtner